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We studied the evolutionary dynamics of a population undergoing asexual reproduction in a flat-
fitness landscape. The quantity of interest is the distribution of the overlap function g which is a mea-
sure of the similarity in the genome structure between two individuals. We obtain analytical expressions
for {g), {g?), and p(q) in a model with the following features: continuous time, fluctuating population
divided into many compartments, and a finite number of genes per genome. A few special cases of in-

terest are also discussed.

PACS number(s): 05.40.+j, 02.50.—r, 87.10.+e¢

Recently, evolutionary dynamics of populations has
aroused some interest. Derrida and Peliti [1], Serva and
Peliti [2], Higgs and Derrida [3], and Maruyama and
Kimura [4] have studied the dynamics of evolving popu-
lations under both sexual and asexual reproduction in a
flat-fitness landscape (i.e., survival and reproduction are
independent of the genome structure) [5]. In analogy
with spin-glass systems, they consider a two-state
(+1,—1) model for the genes and compute an overlap
function ¢ and its distribution. The overlap function g,
which is a measure of the similarity in gene structure be-
tween two individuals, is given by

N
Gop= 3 0lof/N . (1

i=1

o is the state of the ith gene of individual a and N is the
number of genes per genome. Serva and Peliti [2] ob-
tained expressions for the process average of g ({gq)).
They showed that {g) is the same for both sexual and
asexual reproduction. Serva and Peliti further showed
that the variance of (g ) is almost zero for sexual repro-
duction but is of the same order as (g ) for asexual repro-
duction. Similar results were obtained by Higgs and Der-
rida [3] who obtained the distribution p(q) by direct
simulation and showed that this quantity is self-averaging
for sexual reproduction and not so for asexual reproduc-
tion.

These results were obtained by them with N — «, and
for a discrete time and constant population model. In
this paper, we obtain a finite-N, fluctuating-population
(which may also grow), and continuous-time model with
asexual reproduction and obtain (g ), {(g?), and (p(q)).
We consider the population to be distributed into com-
partments with a certain rate of nearest-neighbor migra-
tion to incorporate loosely some kind of geographical
separation.

FORMULATION

Let N be the number of genes, each of which can be in
either of the states +1 or —1. Thus there are 2" possible
states of the genome. The number of individuals in any
genome state and population compartment can change
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due to any one of the following processes: (1) Birth: an
individual can divide into two exactly identical individu-
als with probability aAt in time At; (2) death: an indivi-
dual can die with probability SA? in time At; (3) muta-
tion: a gene can change its state with probability pAz in
time At; and (4) migration: an individual can migrate
from compartment J to J+1 or J —1 with probability
nAt in time At.

Let us consider two individuals, one each in genome
states i; and i,. Out of the N genes in each of the states
i; and i,, suppose i is the number of genes which are in
different states, i.e.,

N
i=0.5|N— 3 o,li)o,liy) |, (2)
k=1

where o, (i,) is the state (+1 or —1) of the kth gene in
genome state i;. This pair will contribute (1—2i/N) to
the overlap function g. We define the quantities of in-
terest (g) and (g2) as the process average weighted
over the number of pairs of individuals, i.e.,

) N N <mi1“’(mi2“,_6il’i2))
)= 1—2i/N),
(g, ,12:1,'2%1 (M;(M;—1)) ( Y
(3)
P <mi j(m[ J_S[ ,))
2\ 1 > 1°h2 . 2
2y = 1—2i/N)*,
<qj> i12=1122=1 <MJ(MJ_1)> ( N

4)

where m; ; and m; ; denote the number of individuals

in the genome states i, and i,, respectively, in compart-
ment J; M, is the total number of individuals in compart-
ment J; and i as defined in Eq. (2) is the number of gene
locations at which states i; and i, differ. The ¢’s, m’s,
and M’s are, in general, dependent on time. We have,
however, not explicitly indicated this dependence for
reasons of simplicity. (g ), the unbiased process average
of g, will be given by
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N N

=3 3

i=1i,=1

m; g(my ;=8 ;) _ using the latter definition [given by Eq. (5)] because of the
< M, (M, —1) >( 1—2i/N) . term in the denominator. Second, in this definition the
J right-hand side is not defined for M;=0,1. However, the
(s) two definitions become identical for a constant popula-
tion (as used in Ref. [2]).

Let P({m;;},t) be the probability that there are exact-
We have used the former definitions, given by Egs. (3) ly m;; (for i=1 to 2V and J=1 to L) individuals in
and (4), for {g) and (g?), respectively, because of two  genome state i and compartment J. Then the master

reasons. First, it is not easy to compute these quantities  equation for P({m, ;},t) is given by

dP({my )0
=a2(Ai’J—1)mi,JP({mi’J},l‘)‘Fﬁ'Z(Ai’J—l)mi,JP({mi’J},I)

dt 0J iJ
tu X (Ai,JZik,J——l)mi,JP( {m;;3,t)
iJ,k
+0.50 3 [(A4;;4; ;4. — D+ (A, ;4; ;= D]m; ;P ({m; ;},1) . (6
iJ
ir (k=1,2,...,N) refers to a state which differs from state i at gene location k only. The summations are from i =1 to

2¥. J=1to L,and K =1to N. Here, 4 ;7 and 4 ;.7 are Van Kampen’s [6] raising and lowering operators defined by
A4, 1 f Umy g, 00=f ({mp p+8, 18, 51,1)
A, f (Ump g}, )=F({mp 7 —8;:8; p),1) .

For {g;) and {g}?) the quantities to be computed are the correlated moments (m; | 7, My, ). We assume uniform

@)

initial conditions, i.e., at # =0 the probability of an individual being in any one of the L2% states is constant (=1/L2%),
and periodic boundary conditions in J, i.e., m; ;. =m, ;. Because of this, the quantities (g;) and (gq?) depend only
on the difference of i; and i, [as given by Eq. (2)] and J =J, —J,. Multiplying both sides of Eq. (6) with m; g M 7,

and summing over all values of m i1, and m; j,» We get, after some algebra,
dp, ; . .
dt =2(a—PB)P; ;+2u[iP; ;= NP, ;+(N —i)P; 4 ;1+0.50[P; ;4 —2P; ;+P; ;]
+C8;085,01tC18;,18,,01C38,08,,1+C28;005 -1 » (8)

where
Co=[a+B+2uN+2n]moexpla—pB)t ,
C,=—"2umgyexpla—pB)t ,

and
Cy=—nmeexpla—p)t,

where m, is the average number of individuals at z =0, in any of the L2” states. The quantity P; ; in the above expres-
sion stands for {m; , m; ;).

Defining

Pi,J ’

we get

dQ,
dt

=2(a—B)Q;; +2ul(N—i+1DQ;_ ;—NQ; ; +(i +1)Q; 1, ;]

+0.59[Q; y+172Q; s+ Qs —1]1+C08;08;0+NC8;18;0+C28;00;1+C28,08;, -1 - 9)

Defining Q, ;, the Fourier transform of Q, ;,
L—1
Qix= 3 Q:sexpli2nkJ/L)
J=0

and
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L—1
Q.,=(01/L) ¥ Q,exp[—i2nkJ/L],
k=0

we get
d0; ~ . A
e =2a=B)0;k +2u[(N —i +D0; 1k ~NGyy+(i + 1, 1 14]
+2n[cos(2mk /L)—1]Q;  +C8, o+ C 8,  +2Cycos(2mk /L)S; . (10)
[

Mean overlap (g )

To obtain an expression for (g ), we define a quantity
R, ;as

R, ,;=

i

Q,,(1—2i/N),

M=

so that R ;, the Fourier transform of R, ;, is

L—1
Rl,k: > R, jexpli2wk /L]
J=0

Il

0, (1-2i/N) .

M=

1

Multiplying Eq. (10) by (1—2i/N) and summing over
i=0to N, we get

L—-1

R
——‘—i-;-'—’f—={[2(a~ﬁ)—4y]+2n[cos(21rk /L)=11}R 4

+Cy+C, (N —2)+2C,cos(2mk /L) . an

The solution of this equation, subject to the initial condi-
tion Ry ;(0)=my, is

R, (t)=myexp(yt)
+[S/(a—B—v)]lexpla—pB)t —exp(yt)],
where
y=2(a—pB)—4u—27n[1—cos(2mk /L)]
and
S=[Cy+(N —2)C,+2C,cos(2mk /L)]exp[ —(a—B)t]
={a+B+4u+2n[1—cos(2mk /L)]}m, .

The equation can be inverted for any value of ¢, and (g )
as a function of time can be obtained. To simplify things,
we take a large value of ¢ and get

R, o()=(my/L) 3, exp({2(a—B)—4u—2n[1—cos(2mk /L)]}t)

k=0

Lol a+B+4u+2n[1—cos(2wk /L)]

+(mo/L) 3

Zo —a+B+au+2n[1—cos(2mk /L)]

X (expla—pB)t —exp{2(a—pB)—4u—2n[1—cos(2mk /L)]}t) . (12)

Using this expression for R, , we get (g ) as

(q)Y=2N[R,o(t)—moexpla—PB)t]/{M*—M) .

(13)

To obtain the quantity { M2—M ), we write the master equation for P,({M,},t), which is defined as the probability
of getting M individuals in compartment J (J =1,2, ..., L) at time ¢.

dP,({M,},1)
dt

»

L _ L
=ay (4,—DM;P\({M;},0+B 3 (4
J=1 J=1

J“‘l)MJPl({MJ},t)

L —_
+0.57] 2 [(AJAJ_1_1)+(AJAJ+I_1)]MJP1({MJ},t) . (14)

J=1

Multiplying by M;(M;— 1), summing, and using the initial conditions of uniform distribution, we get after some alge-

bra, the expression
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2aM0

(MZ—M)=(M(2,—M0/L)exp[2(a—B)t]+ 2

Variance (g2)—(q)?
To obtain (g?), we define a quantity R, ; on the lines
of Ry, as
N —~
Ry()=3 O, (1)(1—2i/N)* .
i=0

Using this in Eq. (10), we see that R, satisfies the
differential equation

Rak _(20a—p1—8
o [a=B)—8u]
—2n[1—cos(2mk /L)]R, ; +(8u/N)R 4
+Cy+NC,(1—2/N)?
+2C,cos(2wk /L) , (16)
where

L—-1 N

Ro ()= 3 3 Q,,(t)expli2mkJ /L)
k=0i=0

is the solution of the differential equation

dR 4
— =2ll@=B)—n[1—cos(2mk /L) JRox

+Cy+NC, +2C,cos(2mk /L) . a7

This coupled set of differential equations is to be solved

subject to the initial conditions
J

L—1

S [exp({2(a—B)—2n[1—cos(2mk /L)]}t)
k=0
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—exp[(a—p)t]/{a—B—2n[1—cos(2wk /L)]} . (15)

—
R, 4 (0)=L2"m(1—1/Lmy)8, o/N +m, ,

(18)
R (0)=L2my(1—1/Lmy)8; o+ my .
After some algebra, we get for R, ; the equation
R, ()=Y exp(y,t)
+(8/N)Y,[exp(y t)—exp(y,t)1/(y,—7,)
+Y;[expla—pB)t —exp(y,1)]1/(a—B—7v,),
(19)
where
Y =mo+L2Y(m§—my/L2")8, /N ,
Y,=L2Mm§—my/L2M)8,
+2amy/{a—B—2q[1—cos(2wk /L)]} ,

Y;=8,/{a—B—v)+S,,

S, =[Cy+NC,+2C,cos(2mk /L)]exp[ — (a—p)t]
={a+pB+2n[1—cos(2wk /L)]}m, ,

S,=[Co+C{(N —2)*/N
+2C,cos(27wk /L) Jexp[ —(a—PB)t]
={a+pB+8u(l—1/N)+2n[1—cos(2wk /L)]}m, ,

y1=2(a—pB)—2y[1—cos(2wk /L)],

v2,=2(a—B)—8u—2n[1—cos(2wk /L)] .

This equation can be inverted for any ¢ to obtain the time
dependence of (g?). We then get

R, o(t)=mgexpla—PB)t+{M*—M)/N+(1—1/N)2amqy/L)

2! exp({2(a—B)—8u—2n[1—cos(2mk /L)]}t)—exp[(a—B)t] . 20)

L

X
k=0

Using this value of R, (1), we can get {g*) as

(g2)=2NR, o(t)—mgexpla—P)t]/{M*—M) .

a—pB—8u—2n[1—cos(27wk /L)]

21

The term myexp(a—f)t in the above expression arises out of the fact that the number of pairs in the same state is

—1y=p2
mgolmgo—1)=mgo—mgo

whereas in R, ,, m(z)yo is used. The expectation value of m is moexp(a@—pB)t. Let us now consider the special cases

a=p, L =1, etc.
Case I: (a=p). When a=p3, we get, from Eq. (15),

(M?>—M)=(M}—My/L)+2atM, /L
L__

1
+(2aMy/L) 3, (1—exp{—2n[1—cos(2wk /L)]}t)/{2n[1—cos(2mk /L)]¢t} . (22)
1

k=

Using Egs. (12), (13), and (15), we get for (g ) the expression
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L' a(l—exp{ —4u—29[1—cos(27k /L)]}t)
(M°/L)KE=O 2u+n[1—cos(2mK /L)]
()= = 23)
(M3—My/L)+2atMy/L +(2aMy/L) 3, (1—exp{—2n[1—cos(27K /L)]}t)/{2q[1—cos(27K /L)]}
K=1
For very large values of ¢,
L—1 a
(M‘)/L)Kéo 2u+n[1—cos(27K /L)]
(g)= = 24)
(M3 —My/L)+2atMy /L +(2aMy/L) 3, (1—exp{ —2n[1—cos(2mK /L)]}t)/{2n[1—cos(27K /L)]}
K=1
[
Note that the expression for (g ) does not contain N, the a/2uM, (for My>>2at and t>>1/4p)  (26a)
number of genes per genome. This is to be expected since (g)~ 1/4ut (for 2at >>M, and t >>1/4u) . (26b)

all locations are identical (because of the uniform initial
conditions), and the overlap function can be related to
the probability that genes in the corresponding locations
in two different individuals are the same. It may also be
noted that Eq. (23) gives the overlap function for a single
compartment. Similar expressions can be written for the
overlap function averaged over the whole population and
for the average overlap function between two individuals
coming from two different compartments [the index J in
Eq. (8) corresponds to the distance between compart-
ments]. We have, however, not pursued this in the
present work.

Equation (23) is for a general expression for {(gq) for
any arbitrary L. We now specifically obtain the asymp-
totic behavior for L =1, L =2, and L — .

L=1 case. Equation (23) for (g ) simplifies to

aMy[1—exp(—4ut)]
2u(ME+2aMyt —M,)

(g)=

The value given by Eq. (26a) is very similar to that ob-
tained by Serva and Peliti [2] if we interchange their p
(mutations per generation) with u/a in Eq. (26a). The
average time taken for an individual to die or to duplicate
itself is 1/(a+B)=1/2a and therefore corresponds to
the generation time. This agreement between our result
and that of Serva and Peliti is expected since in this range
of time, the fluctuations in the population (~V2at M)
are small compared to the initial size of the population,
and hence the constant-population model applies.

At much larger times, Eq. (26b) applies. Here, the fluc-
tuations are larger than the average population size. In
fact as t— oo, the populations tend to become extinct
with probability approaching 1. The few realizations
which survive have a large m, and the net value of (gq)
(tending to 0) given by Eq. (26b) is due to these realiza-
tions. Note that the averaging procedure [see Eq. (3)]
gives a higher weight to the larger populations.

L =2 case. When there are two compartments, Eq.
(23) may be written as

(aMy/2)([1—exp(—4ut)]/2u)+ {1 —exp[ —4(u+n)t]} /(2u+27))

(g)=

M3 —My/2+atMy+aMy[1—exp(—4nt)] /4y

~(a/4Myu)[1+1/(1+n/u)] (for My>>2at and t >>1/4u) . 27)

(g now depends on the value of 7/, the relative im-
portance of migration with respect to mutation, also.
When 7/u is small, we get back the result of the single
compartment [Eq. (26a)]. This is because in this case the
two compartments become almost insulated from each
other. When 7/u>>1, the second term in the above ex-
pression drops out and we get {g)~a/2u(2M,). A
large value of 77/u means that the two compartments act
as a single compartment.
L — o case. Here we consider the case ut >>1 and
M, >>2at. Equation (23), in this case, can be written as
L—1
(g)~(/MyL) 3 a/{2u+n[1—cos(27K /L)]}
K=0

(28a)

~(a/MyL) fOLdK/[2/,¢+2nTrzK2/L2] (28b)

=[a/QMymV'qu)ltan ™ [7V(n/p)] . (28¢)

When n— 0, Eq. (28c) reduces to Eq. (26a). As

tan”'[7V (n/u]<wVin/w) ,

(g ) given by Eq. (28¢c) (for 570) is less than that given
for a single compartment. The other extreme limit of
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complete mixing is obtained for /L2?>>u. In this case,
only the first term in the sum in Eq. (28a) contributes and

Lth compartment and 1/u is the average time for a mu-
tation.

For a=p3, the expression for {g?) given by Eq. (21)
reduces to

(g)~a/2uM,L. This result can be easily understood by
noting that L?/7 is the order of time for migration to the
J

L—1
2M2amy/L)1—1/N) 3 (1—exp{8u—2n[1—cos(27K /L)]}t)/{8u+2n[1—cos(27K /L)]}
K=0

(g?)=—-+ —
(M3—My/L)+2atMy /L +(2aMy/L) S, (1—exp{—2n[1—cos(27K /L)1}t)/{2n[1—cos(27K /L)]}
K=1

(29)

For L =1, the above expression simplifies to
1/N +a(1—1/N)/(4uM,) (for My>>2at and t >>1/4u) (30a)
(g*)~ a/(4uM,) (for N— ) . (30b)

Expression (30b) for {g?) is similar to that obtained by Serva and Peliti in the limit N— . For finite N, {g2) [Eq.
(30a)] shows a 1/N dependence which may even dominate if N <a/4uM,.
Case II: (a>p). For a growing population (a > f3), we get from Egs. (12), (13), and (15), after some algebra,

(g)=[2a/(a—B—4u)]{exp(—4ut)—exp[ —(a—PB)t]} /{[My+(a+B)/(a—B)]—[2a/(a—B)]exp[ —(a—B)t]} .
(31)

This equation gives the relative interplay of the population growth parameters (a and B) and the gene mutation charac-
teristics (12). We see that the large-t behavior of (g ) is exponential. The leading term is exp[ —(a—f)t] or exp( —4ut)
according to whether a —f <4u or a—fB>4u. When a—B=4u, the variation is ¢ exp( —4ut). That is, for large ¢, we

get

[2a/(a—B—4u)Jexp( —4ut)/[My+(a+B)/(a—B)] (for a—B>4u)
(g)~ {[2a/(4u—a+B)]exp[ —(a—P)t]/[My+(a+B)/(a—B)] (for a—B<4u)
2at[exp(—4ut)]/[My+(a+B)/(a—B)] (for a—B=4u) .

Further, it is easy to see that the first term on the right-
hand side of Eq. (30a) dominates and therefore

(g>)~1/N .

We find that for finite N, as t— o, {gq)—0, whereas
(g*)—1/N is nonzero. This is because the value of g
varies from —1 to +1, whereas g2 is always non-
negative, varying only between O and 1.

Probability distribution of ¢

Once again, we define {(p(g)) as the weighted average
over the number of pairs in the realization, i.e.,

(p(g))=[Qio—8,0{m )]/ {M*—M) , (32)

where ¢; =(N —2i)/N for i=0,1,2,...,N.
To make things simple, we consider only the case a=/3
and L =1. Equation (9) then reduces to

dQ;(1) . . .
T=2.u[(N“l +1Q; +E+1)Q; — (N —i)Q;]

+C8,0+NC, 8, - (33)

[

(As we are considering only one compartment, so the
suffix J of Q is dropped.)
Defining the generation function Q, as
_— N .
Qz= 2 Qiz‘ .
i=0
We have

dQ,(1)

& 2u(1—2)23Q,(t)/3z —2uN(1—2)Q,()+S ,

(34)
where S =Cy,+NC,z. This partial differential equation
has to be solved subject to the initial condition

0,(0)=(mi—my/2Y(1+2)¥+m, . (35)

Using the method of characteristics, one obtains the solu-
tion of the equation, after some algebra, as

0,()=(mi—my/2N)(1+2)V
+(my/2M)[(1+2)+(1—z)exp( —4ut) ]V
+[f(z)=F(D]1+2)V, (36)
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where

L= [(1+z)—(1—2z)exp(—4ut)]
[(14+2z)+(1—2z)exp(—4ut)]

and
f@)= [ {(Co+NC2)/[(1+2)V T (1—2)]}dz .

On inverting this expression, we get for Q;(¢) the relation

N
ST, 6

Q,-(t)zmoﬁ,;o—i'(m(z,—mo/ZN)

where T;(N) satisfies the recursion relations

T{(N)=(mya/2uN) |8;,— {[1+exp(—4ut)]/2}V

i

X {[1—exp(—4ut)]/[1+exp(—4ut)]}’
+0.5[T;(N—1)+T;_(N—1)], (38)
with

To(l)=(mya/4u)[1—exp(—4ut)]+myat , 39)
T,(1)=—(mgoa/4u)[1—exp(—4ut)]+myat .

RESULTS AND CONCLUSIONS

Using the recursion relations given by Egs. (37) and
(38) in Eq. (32), we obtained {p(q)) for a number of
values of N. Some simulation studies were also carried
out for N <11. It was seen that {p(q)), (g ), and (g?)
obtained by the two methods agreed very well.

Figure 1 shows the plot of {p(g)) versus g for a few
representative values of N [computed using Eq. (37)]. It
is seen that initially (at low N) the distribution is almost
symmetrical about ¢ =0. As N increases, the distribution
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p(q)

FIG. 1. Probability distribution of g for N =8, 64, 512, and
5000.

becomes skewed and tends to fall off more sharply for
values of ¢ <0. Derrida and Peliti [1] obtained an ex-
pression for {p(q)) in the infinite-N limit which has
nonzero values only for g > 0.

For constant population (a=/3), single compartment
(L =1), and t <<M,, we get for (g ) and {g2) the same
expressions as Serva and Peliti [2] for N— . For finite
N, (g?) contains terms of order 1/N, whereas (g ) is in-
dependent of N. For ¢t >>M,, (g)=0, but {g?) still is
nonzero. For a>f, (q)—0, whereas (g?) is not zero.
For small N the probability distribution obtained by us
differs considerably from the distribution (for N — «) ob-
tained by Derrida and Peliti [1]. According to our ex-
pression, {p(g)) is nonzero for g ranging from —1 to
+1, whereas in their case, p (q) is nonzero only for g > 0.
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